ESTIMATION OF IMMUNOHISTOCHEMICAL EXPRESSION OF CD34 IN NERVOUS SYSTEM TUMOURS
DOI:
https://doi.org/10.52701/monc.2021.v2i2.45Keywords:
CD34, Glioma, immunohistochemestryAbstract
The classification of Central Nervous System (CNS) tumours is constantly changing, due to continuous discoveries in genetic, epigenetic, radiographic and histologic areas that facilitate better classification and subtyping of these heterogenous neoplasms. The tumour development, proliferation and dissemination depend on several factors, such as mitogenic signalling, local microenvironment and angiogenesis. CD34 is a transmembrane glycoprotein, expressed by hematopoietic progenitor/stem cells and also by vascular endothelium and tumour-infiltrating immune cells. The role of CD34 in maintaining vascular integrity has been demonstrated in several solid tumours, therefore it can be used as a marker for tumour vasculature and for vascular pattern characterization within tumours. The aim of our study was to investigate the role of CD34 as angiogenic biomarker that could predict the progression from low to high grade glioma. For this purpose, we evaluated the expression of CD34 in grade I, II, III and IV glioma tissue. We found that all glioma tumours expressed CD34, however, no correlation between histological grade of glioma and CD34 expression or tumour vascularization was observed.
References
David N. Louis, Eric C. Holland, J. Gregory Cairncross. Glioma Classification A Molecular Reappraisal. Am J Pathol. 2001 Sep; 159(3): 779–786. https://doi.org/10.1016/S0002-9440(10)61750-6
Paul M. Brennan.Tumours of the central nervous system. Surgery (Oxford) Volume 36, Issue 11, November 2018, Pages 630-636. https://doi.org/10.1016/j.mpsur.2018.09.001
Lechner Rodríguez Aguilara, María LauraVilchezb, Laura N.Milla Sanabriab. Targeting glioblastoma stem cells: The first step of photodynamic therapy. Photodiagnosis and Photodynamic Therapy Volume 36, December 2021, 102585. https://doi.org/10.1016/j.pdpdt.2021.102585
Arvids Jakovlevs, Andrejs Vanags, Janis Gardovskis, Ilze Strumfa. Molecular classification of diffuse gliomas. Pol J Pat hol 2019; 70 (4): 246-258. https://doi.org/10.5114/pjp.2019.93126
D.Figarella-Branger, A.Maues de Paula, C.Colin, C.Bouvier. Histomolecular classification of adult diffuse gliomas: The diagnostic value of immunohistochemical markers. Revue Neurologique Volume 167, Issue 10, October 2011, Pages 683-690. https://doi.org/10.1016/j.neurol.2011.07.006
Ingeborg Fischer, Jean-Pierre Gagner, Meng Law, Elizabeth W. Newcomb, David Zagzag. Angiogenesis in Gliomas: Biology and Molecular Pathophysiology. Volume15, Issue 4 October 2005 Pages 297-310.
https://doi.org/10.1111/j.1750-3639.2005.tb00115.x
John E.Dick. Stem cell concepts renew cancer research. Volume 112, Issue 13, 15 December 2008, Pages 4793-4807.
https://doi.org/10.1182/blood-2008-08-077941
Yushan Zhang. CD34 Over-Expression is Associated With Gliomas’ Higher WHO Grade. 2016 Feb; 95(7): e2830. February 2016 - Volume 95 - Issue 7 - p e2830. https://dx.doi.org/10.1097%2FMD.0000000000002830
Benjamin Gesundheit, Eliel Ben-David, Yehudit Posen. Effective Treatment of Glioblastoma Multiforme With Oncolytic Virotherapy: A Case-Series. Front. Oncol., 14 May 2020.
https://doi.org/10.3389/fonc.2020.00702
Pawan K.Verma, Bhawan Nangarwal. A clinico-pathological and neuro-radiological study of angiomatous meningioma: Aggressive look with benign behaviour. Journal of Clinical Neuroscience. Volume 83, January 2021, Pages 43-48.
https://doi.org/10.1016/j.jocn.2020.11.032
Tao Zhanga, Jian-min Yu, Yong-qi Wanga, Dan-dan Yin, Long-jiang Fang. WHO grade I meningioma subtypes: MRI features and pathological analysis. Life Sciences Volume 213, 15 November 2018, Pages 50-56.
https://doi.org/10.1016/j.lfs.2018.08.061
Ansley Unterberger, Edwin Ng, Anjali Pradhan, Aditya Kondajji, Daniel Kulinich, Courtney Duong, Isaac Yang. Adjuvant radiotherapy for atypical meningiomas is associated with improved progression free survival. Journal of the Neurological Sciences Volume 428, 15 September 2021, 117590.
https://doi.org/10.1016/j.jns.2021.117590
Ricardo A.Domingo Shashwat Tripathi. Mitotic Index and Progression-Free Survival in Atypical Meningiomas. World Neurosurgery Volume 142, October 2020, Pages 191-196.
https://doi.org/10.1016/j.wneu.2020.06.189
Anne G. Osborn, Karen L. Salzman, Miral D. Jhaveri. Low-Grade Diffuse Astrocytoma. Diagnostic Imaging: Brain (Third Edition)Diagnostic Imaging 2016, Pages 434-437.
https://doi.org/10.1016/B978-0-323-37754-6.50128-7
B.K. Kleinschmidt-DeMasters, Fausto J. Rodríguez, Tarik Tihan. Diffuse Astrocytoma. Diagnostic Pathology: Neuropathology (Second Edition) Diagnostic Pathology 2016, Pages 4-13.
https://doi.org/10.1016/B978-0-323-44592-4.50009-3
LinCheng, ZhiHuang . Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth. Cell Volume 153, Issue 1, 28 March 2013, Pages 139-152.
https://doi.org/10.1016/j.cell.2013.02.021
Lu, IN., Dobersalske, C., Rauschenbach, L. et al. Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nat Commun 12, 3895 (2021).
https://doi.org/10.1038/s41467-021-23995-z
Ichim, T.E., O’Heeron, P. & Kesari, S. Fibroblasts as a practical alternative to mesenchymal stem cells. J Transl Med 16, 212 (2018).
https://doi.org/10.1186/s12967-018-1536-1
Sonoda Y. Human CD34-negative hematopoietic stem cells: The current understanding of their biological nature. Exp Hematol. 2021 Apr;96:13-26.
https://doi.org/10.1016/j.exphem.2021.02.004
Martin-Broto, J.; Mondaza-Hernandez, J.L.; Moura, D.S.; Hindi, N. A Comprehensive Review on Solitary Fibrous Tumor: New Insights for New Horizons. Cancers 2021, 13, 2913.
https://doi.org/10.3390/cancers13122913
Tariq, M.U., Din, N.U., Abdul-Ghafar, J. et al. The many faces of solitary fibrous tumor; diversity of histological features, differential diagnosis and role of molecular studies and surrogate markers in avoiding misdiagnosis and predicting the behavior. Diagn Pathol 16, 32 (2021).
https://doi.org/10.1186/s13000-021-01095-2
Zhao P, Zhu T, Tang Q, Liu H, Zhu J, Zhang W. Immunohistochemical and genetic markers to distinguish hemangiopericytoma and meningioma. Int J Clin Exp Med. 2015 Mar 15;8(3):3291-9. PMID: 26064218; PMCID: PMC4443052.
Lu, IN., Dobersalske, C., Rauschenbach, L. et al. Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nat Commun 12, 3895 (2021).
https://doi.org/10.1038/s41467-021-23995-z
Majchrzak K, Kaspera W, Szyma? J, Bobek-Billewicz B, Hebda A, Majchrzak H Neurol Neurochir Pol. 2013 Jul-Aug; 47(4):325-31.
https://doi.org/10.5114/ninp.2013.36757
Tariq, M.U., Din, N.U., Abdul-Ghafar, J. et al. The many faces of solitary fibrous tumor; diversity of histological features, differential diagnosis and role of molecular studies and surrogate markers in avoiding misdiagnosis and predicting the behavior. Diagn Pathol 16, 32 (2021).
https://doi.org/10.1186/s13000-021-01095-2
Nagaishi, M., Yokoo, H., Nobusawa, S. et al. A distinctive pediatric case of low-grade glioma with extensive expression of CD34. Brain Tumor Pathol 33, 71–74 (2016).
https://doi.org/10.1007/s10014-015-0236-2
Kovacs M, Trias E, Varela V, Ibarburu S, Beckman JS, Moura IC, Hermine O, King PH, Si Y, Kwon Y, Barbeito L. CD34 Identifies a Subset of Proliferating Microglial Cells Associated with Degenerating Motor Neurons in ALS. International Journal of Molecular Sciences. 2019; 20(16):3880.
https://doi.org/10.3390/ijms20163880
Koelsche C, Sahm F, Wöhrer A, Jeibmann A, Schittenhelm J, Kohlhof P, Preusser M, Romeike B, Dohmen-Scheufler H, Hartmann C, Mittelbronn M, Becker A, von Deimling A, Capper D. BRAF-mutated pleomorphic xanthoastrocytoma is associated with temporal location, reticulin fiber deposition and CD34 expression. Brain Pathol. 2014 Apr;24(3):221-9. doi: 10.1111/bpa.12111. Epub 2014 Jan 29. PMID: 24345274; PMCID: PMC8029045.
https://doi.org/10.1111/bpa.12111
Alastair J Kirby, José P Lavrador, Istvan Bodi, Francesco Vergani, Ranjeev Bhangoo, Keyoumars Ashkan, Gerald T Finnerty, Multicellular “hotspots” harbor high-grade potential in lower-grade gliomas, Neuro-Oncology Advances, Volume 3, Issue 1, January-December 2021, vdab026,
https://doi.org/10.1093/noajnl/vdab026
Mei X, Chen YS, Chen FR, Xi SY, Chen ZP. Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol. 2017 Aug 1;19(8):1109-1118. doi: 10.1093/neuonc/nox016. PMID: 28340100; PMCID: PMC5570159.
https://doi.org/10.1093/neuonc/nox016
Etzell JE, Keet C, McDonald W, Banerjee A. Medulloblastoma simulating acute myeloid leukemia: case report with a review of “myeloid antigen” expression in nonhematopoietic tissues and tumors. J Pediatr Hematol Oncol. 2006;28:703–710.
https://doi.org/10.1097/01.mph.0000243647.66734
Lyden D, Hattori K, Dias S, et al. Impaired recruitment of bonemarrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 2001;7:1194–1201.
https://doi.org/10.1038/nm1101-1194
Lu, IN., Dobersalske, C., Rauschenbach, L. et al. Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nat Commun 12, 3895 (2021).
https://doi.org/10.1038/s41467-021-23995-z
Reali C, Scintu F, Pillai R, Cabras S, Argiolu F, Ristaldi MS, et al. Differentiation of human adult CD34+stem cells into cells with a neural phenotype: Role of astrocytes. Exp Neurol 2006;197:399-406.
https://doi.org/10.1016/j.expneurol.2005.10.004
Galloway M. CD34 expression in glioblastoma and giant cell glioblastoma. Clin Neuropathol 2010;29:89-93.
https://doi.org/10.5414/npp29089
Georgieva, Reneta & Lyutfi, Emran & Stoyanov, George & Dzhenkov, Deyan. (2020). CD34 neural progenitor cells in glioblastoma multiforme. Glioma. 3. 13-5.
https://doi.org/10.4103/glioma.glioma_28_19
Szopa W, Burley TA, Kramer-Marek G, Kaspera W. Diagnostic and therapeutic biomarkers in glioblastoma: Current status and future perspectives. Biomed Res Int 2017;2017:8013575. https://doi.org/10.1155/2017/8013575
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Medico Science Press

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work by Medico Science Press is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Medico Oncology is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute or share alike, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.