HYPOXIA AND CANCER

Authors

  • Daniela Miricescu Carol Davila University of Medicine and Pharmacy Bucharest Romania
  • Iulia-Ioana Stanescu-Spinu
  • Alexandra Ripszky Totan
  • Constantin Stefani
  • Silviu Constantin Badoiu
  • Dan Alexandru Enasescu
  • Maria Greabu

DOI:

https://doi.org/10.52701/monc.2021.v2i2.43

Keywords:

hypoxia, solid tumors, isoforms, overexpression, survival rate

Abstract

Hypoxia can be defined as the master regulator of the tumorigenesis process which can negatively affect the body response to radio- and chemotherapy. Solid tumors are characterized by hypoxia, with O2 concentration around 0.1-1%. Hypoxia-inducible factors, especially HIF-1a are overexpressed in many human pathologies, including various types of cancer, chronic kidney disease, cardiovascular disorders, and age-related macular degeneration. Currently, three isoforms of HIF, HIF-1, HIF-2, and HIF-3 have been identified. HIF-1a is overexpressed in many cancer types, involved in initiation and progression, and correlated with a poor survival rate. The main aim of this review is to present the role of hypoxia during cancer progression.

References

Unwith S, Zhao H, Hennah L, Ma D. The potential role of HIF on tumour progression and dissemination. International Journal of Cancer. 2015;136(11):2491-503.

https://doi.org/10.1002/ijc.28889

Yang Y, Sun M, Wang L, Jiao B. HIFs, angiogenesis, and cancer. Journal of Cell Biochemistry. 2013;114(5):967-74.

https://doi.org/10.1002/jcb.24438

Vallée A, Lecarpentier Y. Crosstalk between peroxisome proliferator-activated receptor gamma and the canonical WNT/?-Catenin pathway in chronic inflammation and oxidative stress during carcinogenesis. Frontiers in Immunology. 2018; 13(9): 745.

https://doi.org/10.3389/fimmu.2018.00745

Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opinion on Drug Discovery. 2019;14(7):667-82. https://doi.org/10.1080/17460441.2019.1613370

Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncology. 2017 Apr;56(4):503-515. https://doi.org/10.1080/0284186X.2017.1301680

Semenza GL. Targeting HIF-1 for cancer therapy. Natural Reviews Cancer. 2003,3(10):721-32. https://doi.org/10.1038/nrc1187

Koh MY, Spivak-Kroizman TR, Powis G. HIF-1alpha and cancer therapy. Koh MY, SpivakKroizman TR, Powis G. Recent Results Cancer Research. 2010; 180:15 34.

https://doi.org/10.1007/978-3-540-78281-0_3

Salminen A, Kaarniranta K, Kauppinen A. AMPK and HIF signaling pathways regulate both longevity and cancer growth: the good news and the bad news about survival mechanisms. Biogerontology. 2016;17(4):655-80.

https://doi.org/10.1007/s10522-016-9655-7

Galanis A, Pappa A, Giannakakis A, Lanitis E, Dangaj D, Sandaltzopoulos R. Reactive oxygen species and HIF-1 signalling in cancer. Cancer Letters. 2008;18;266(1):12-20. https://doi.org/10.1016/j.canlet.2008.02.028

Kaelin WG Jr. The VHL tumor suppressor gene: insights into oxygen sensing and cancer. Transactions of the American Clinical and Climatological Association. 2017; 128:298-307. PMCID: PMC5525432

Hu X, Fang Y, Zheng J, He Y, Zan X, Lin S, Li X, Li H, You C. The association between HIF-1? polymorphism and cancer risk: a systematic review and meta-analysis. Tumour Biology. 2014; 35(2):903-16. https://doi.org/10.1007/s13277-013-1160-x

Pezzuto A, Carico E. Role of HIF-1 in Cancer Progression: Novel Insights. A Review. Current Molecular Medicine. 2018;18(6):343-51. https://doi.org/10.2174/1566524018666181109121849

Lin MC, Lin JJ, Hsu CL, Juan HF, Lou PJ, Huang MC. GATA3 interacts with and stabilizes HIF-1alpha to enhance cancer cell invasiveness. Oncogene. 2017, 27;36(30):4243-52.

https://doi.org/10.1038/onc.2017.8

Mennerich D, Kubaichuk K, Kietzmann T. DUBs, hypoxia, and cancer. Trends Cancer. 2019;5(10):632-653.

https://doi.org/10.1016/j.trecan.2019.08.005

Yang W, Ma J, Zhou W, Cao B, Zhou X, Zhang H, Zhao Q, Hong L, Fan D. Reciprocal regulations between miRNAs and HIF-1alpha in human cancers. Cell Molecular Life Science. 2019;76(3):453-.71. https://doi.org/10.1007/s00018-018-2941-6

Ajdukovi? J. HIF-1--a big chapter in the cancer tale. Experimental Oncology. 2016,38(1):9-12. PMID: 27031712

Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. Journal of Clinical Investigation. 2013;123(9):3664-71. https://doi.org/10.1172/JCI67230

Azimi I. The interplay between HIF-1 and calcium signalling in cancer. International Journal of Biochemistry Cellular Biology. 2018; 97:73-77. https://doi.org/10.1016/j.biocel.2018.02.001

Korbecki J, Simi?ska D, G?ssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-?B activation: a review of the molecular mechanisms. International Journal of Molecular Science. 2021; 2;22(19):10701. https://doi.org/10.3390/ijms221910701

Fuentes NR, Phan J, Huang Y, Lin D, Taniguchi CM. Resolving the HIF paradox in pancreatic cancer. Cancer Letters. 2020;1;489: 50-55. https://doi.org/10.1016/j.canlet.2020.05.03

Yeung SJ, Pan J, Lee MH. Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cellular and Molecular Life Science. 2008;65(24):3981-99.

https://doi.org/10.1007/s00018-008-8224-x

Mortada WI, Awadalla A, Khater S, Ahmed A, Hamam ET, El-Zayat M, Shokeir AA. Copper and zinc levels in plasma and cancerous tissues and their relation with expression of VEGF and HIF-1 in the pathogenesis of muscle invasive urothelial bladder cancer: a case-controlled clinical study. Environmental Science and Pollution Research International. 2020;27(13):15835-841.

https://doi.org/10.1007/s11356-020-08113-8

Zudaire E, Martínez A, Cuttitta F. Adrenomedullin and cancer. Regulatory Peptides. 2003;15;112(1-3):175-83. https://doi.org/10.1016/s0167-0115(03)00037-5

Wang Y, Li Z, Zhang H, Jin H, Sun L, Dong H, Xu M, Zhao P, Zhang B, Wang J, Pan Y, Liu L. HIF-1alpha and HIF-2alpha correlate with migration and invasion in gastric cancer. Cancer Biology & Therapy. 2010;15;10(4):376-82. https://doi.org/10.4161/cbt.10.4.12441

Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. Jouranal of Zhejiang University Science B. 2015,16(1):32-43. https://doi.org/10.1631/jzus.B1400221

Wan J, Wu W. Hyperthermia induced HIF-1a expression of lung cancer through AKT and ERK signaling pathways. Journal of Experimental & Clinical Cancer Research. 2016, 26;35(1):119.

https://doi.org/10.1186/s13046-016-0399-7

Jiang X, Zhang S, Yin Z, Sheng Y, Yan Q, Sun R, Lu M, Zhang Z, Li Y. The correlation between NEDD4L and HIF-1alpha levels as a gastric cancer prognostic marker. International Journal of Medical Sciences. 2019; 1;16(11):1517-1524.

https://doi.org/10.7150/ijms.34646

Fallah J, Rini BI. HIF Inhibitors: Status of Current Clinical Development. Current Oncology Reports. 2019; 22;21(1):6.

https://doi.org/10.1007/s11912-019-0752-z

Hou P, Shi P, Jiang T, Yin H, Chu S, Shi M, Bai J, Song J. DKC1 enhances angiogenesis by promoting HIF-1alpha transcription and facilitates metastasis in colorectal cancer. British Journal of Cancer. 2020 Mar;122(5):668-679.

https://doi.org/10.1038/s41416-019-0695-z

Yang G, Shi R, Zhang Q. Hypoxia and oxygen-sensing signaling in gene regulation and cancer progression. International Journal of Molecular Science. 2020; 31;21(21):8162.

https://doi.org/10.3390/ijms21218162

Jögi A, Ehinger A, Hartman L, Alkner S. Expression of HIF-1alpha is related to a poor prognosis and tamoxifen resistance in contralateral breast cancer. PLoS One. 2019;10;14(12):e0226150. https://doi.org/10.1371/journal.pone.0226150

Schito L. Hypoxia-dependent angiogenesis and lymphangiogenesis in cancer. Advances in Experimental Medicine and Biology. 2019; 1136:71-85. https://doi.org/10.1007/978-3-030-12734-3_5

Li H, Jia Y, Wang Y. Targeting HIF-1alpha signaling pathway for gastric cancer treatment. Pharmazie. 2019;1;74(1):3-7.

https://doi.org/10.1691/ph.2019.8674

Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget. 2017;6;8(23):38022-043. https://doi.org/10.18632/oncotarget.16723

Mortada WI, Awadalla A, Khater S, Ahmed A, Hamam ET, El-Zayat M, Shokeir AA. Copper and zinc levels in plasma and cancerous tissues and their relation with expression of VEGF and HIF-1 in the pathogenesis of muscle invasive urothelial bladder cancer: a case-controlled clinical study. Environmental Science and Pollution Research International. 2020;27(13):15835-15841.

https://doi.org/10.1007/s11356-020-08113-8

Chen WG, Sun J, Shen WW, Yang SZ, Zhang Y, Hu X, Qiu H, Xu SC, Chu TW. Sema4D expression and secretion are increased by HIF-1alpha and inhibit osteogenesis in bone metastases of lung cancer. Clinical & Experimental Metastasis. 2019;36(1):39-56. https://doi.org/10.1007/s10585-018-9951-5

Semenza GL. Pharmacologic Targeting of Hypoxia-Inducible Factors. Annual Review of Pharmacology and Toxicology. 2019; 6;59:379-403.

https://doi.org/10.1146/annurev-pharmtox-010818-021637

Mir R, Abu-Duhier FM, Albalawi IA. Molecular evaluation of HIF-1? gene variation and determination of its frequency and association with breast cancer susceptibility in Saudi Arabia. Endocrine, Metabolic & Immune Disorders -Drug Targets. 2021;21(3):544-53. https://doi.org/10.2174/187153032066620091010521

Liu T, Yang H, Mou Y, Zhang H. Correlation of changes in HIF-1alpha and p53 expressions with vitamin B3 deficiency in skin cancer patients. Giornale Italiano di Dermatologia e Venereologia. 2019;154(5):513-518. https://doi.org/10.23736/S0392-0488.17.05775-3

Chang HL, Lin JC. SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1alpha in lung cancer cells through alternative splicing mechanism. Biochimica et Biophysica Acta-Molecular Cell Research. 2019;1866(12):118550.

https://doi.org/10.1016/j.bbamcr.2019.118550

Han S, Huang T, Li W, Liu S, Yang W, Shi Q, Li H, Ren J, Hou F. Association between hypoxia-inducible factor-2alpha (HIF-2alpha) expression and colorectal cancer and its prognostic role: a systematic analysis. Cellular Physiology and Biochemistry. 2018;48(2):516-527. https://doi.org/10.1159/000491806

Downloads

Published

2021-12-27