AN UPDATE ON THE MOLECULAR PATHOLOGY OF OVARIAN CANCER

Authors

  • Elena-Victoria Manea UMF Craiova
  • Ani-Simona Sevastre University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, Romania
  • Andreea Hodorog
  • Iuliana Buzatu
  • Anica Dricu Faculty of Medicine, University of Medicine and Pharmacy of Craiova

DOI:

https://doi.org/10.52701/monc.2021.v2i2.41

Keywords:

ovarian cancer, targeted therapy, gynecological malignancy, biomarkers, gene mutation

Abstract

Ovarian cancer is the most lethal malignancy in the gynecological field. Even though there have been a lot of progresses in the medical sector, ovarian cancer remains a big challenge for the healthcare providers all over the world. The majority of women are diagnosed in advanced stages of the disease, such as stage III or IV, as ovarian cancer is usually asymptomatic and has restricted screening tests. In the past years, significant achievements have been made regarding therapeutically approach for women with ovarian cancer, with a development of surgical and medical treatment. Heterogeneity is one of the most important characteristics of ovarian cancer. Genetic factors have a great influence on this pathology, leading to major therapeutic challenges. Newly diagnosed oncologic patients have the recommendations of being genetically tested, in order to find any alteration that could guide the approach and treatment throughout the disease. Over time, agents that target certain pathways involved in the tumor process have been discovered. They have specific targets, thus achieving control over the multiplication and expansion of tumor cells. The treatment options changed gradually and most of the progresses have been linked to molecularly targeted therapies.

References

Siegel RL, Miller KD and Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70: 7–30. https://doi.org/10.3322/caac.21590

Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian Cancer: An Integrated Review. Semin. Oncol. Nurs. 2019, 35, 151–156.

https://doi.org/ 10.1016/j.soncn.2019.02.001

Lheureux S, Gourley C, Vergote I, et al. Epithelial ovarian cancer. Lancet 2019; 393:1240–1253. https://doi.org/10.1016/S0140-6736(18)32552-2

Zhang, C.; Ma, T. Poorer prognosis of ovarian squamous cell carcinoma than serous carcinoma: A propensity score matching analysis based on the SEER database. J. Ovarian Res. 2020, 13, 75. https://doi.org/10.1186/s13048-020-00675-y

Kieffer, Y.; Bonneau, C.; Popova, T.; Rouzier, R.; Stern, M.-H.; Mechta-Grigoriou, F. Clinical Interest of Combining Transcriptomic and Genomic Signatures in High-Grade Serous Ovarian Cancer. Front. Genet. 2020, 11, 219.

https://doi.org/10.3389/fgene.2020.00219

Radu Mihaela-R., Pradatu Alina, Duica Florentina, Micu R., Cretoiu Sanda-M., Suciu N., Cretoiu D., Varlas V. N., Radoi Viorica-E.; Ovarian Cancer: Biomarkers and Targeted Therapy; Biomedicines 2021, 9, 693. https://doi.org/10.3390/biomedicines9060693

Dall’Acqua Alessandra, Bartoletti Michele, Masoudi-Khoram N., Sorio R., Puglisi F., Belletti Barbara, Baldassarre G. Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives. Cancers 2021, 13, 3035.

https://doi.org/10.3390/cancers13123035

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394–424. https://doi.org/10.3322/caac.214922.21492

Merritt MA, Rice MS, Barnard ME, et al. Pre-diagnosis and post-diagnosis use of common analgesics and ovarian cancer prognosis (NHS/NHSII): a cohort study. Lancet Oncol. 2018; 19 (8):1107–1116. https://doi.org/10.1016/S1470-2045(18)30373-5

Moran Susan, Devanaboyina Monika, Staats Hannah, Stanbery Laura, Nemunaitis J.. Ovarian Cancer Immunotherapy and Personalized Medicine. Int. J. Mol. Sci. 2021, 22, 6532.

https://doi.org/10.3390/ijms22126532

Tao Guo, Xue Dong, Shanli Xie, Ling Zhang, Peibin Zeng, Lin Zhang. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Management and Research 2021:13 3081–3100.

https://doi.org/10.2147/CMAR.S292992

González-Martín, A.; Pothuri, B.; Vergote, I.; Christensen, R.D.; Graybill, W.; Mirza, M.R.; McCormick, C.; Lorusso, D.; Hoskins, P.; Freyer, G.; et al. Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2391–2402.

https://doi.org/10.1056/NEJMoa1910962

Ray-Coquard, I.; Pautier, P.; Pignata, S.; Pérol, D.; González-Martín, A.; Berger, R.; Fujiwara, K.; Vergote, I.; Colombo, N.; Mäenpää, J.; et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer. N. Engl. J. Med. 2019, 381, 2416–2428. https://doi.org/10.1056/NEJMoa1911361

Kurnit Katherine C., Fleming Gini F., Lengyel Ernst. Updates and New Options in Advanced Epithelial Ovarian Cancer Treatment. Obstet Gynecol 2021; 137:108–21. https://doi.org/10.1097/AOG.0000000000004173

Morgan RD, Clamp AR, Evans DGR, Edmondson RJ, Jayson GC. PARP inhibitors in platinum-sensitive high-grade serous ovarian cancer. Cancer Chemother Pharmacol. 2018;81(4):647–658. https://doi.org/10.1007/s00280-018-3532-9

Santandrea, G.; Piana, S.; Valli, R.; Zanelli, M.; Gasparini, E.; De Leo, A.; Mandato, V.; Palicelli, A. Immunohistochemical biomarkers as a Surrogate of Molecular Analysis in Ovarian Carcinomas: A Review of the Literature. Diagnostics 2021, 11, 199. https://doi.org/10.3390/diagnostics11020199

Mirza MR, Coleman RL, Gonzalez-Martin A, et al. The forefront of ovarian cancer therapy: update on PARP inhibitors. Ann Oncol 2020; 31:1148–1159. https://doi.org/10.1016/j.annonc.2020.06.004

Ahmed, N.; Escalona, R.; Leung, D.; Chan, E.; Kannourakis, G. Tumour microenvironment and metabolic plasticity in cancer and cancer stem cells: Perspectives on metabolic and immune regulatory signatures in chemoresistant ovarian cancer stem cells. Semin. Cancer Biol. 2018, 53, 265–281. https://doi.org/10.1016/j.semcancer.2018.10.002

Cassetta, L.; Fragkogianni, S.; Sims, A.H.; Swierczak, A.; Forrester, L.M.; Zhang, H.; Soong, D.Y.; Cotechini, T.; Anur, P.; Lin, E.Y.; et al. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019, 35, 588–602.e10.

https://doi.org/10.1016/j.ccell.2019.02.009

Pearce, O.M.; Delaine-Smith, R.M.; Maniati, E.; Nichols, S.; Wang, J.; Böhm, S.; Rajeeve, V.; Ullah, D.; Chakravarty, P.; Jones, R.R.; et al. Deconstruction of a Metastatic Tumor Microenvironment Reveals a Common Matrix Response in Human Cancers. Cancer Discov. 2018, 8, 304–319. https://doi.org/10.1158/2159-8290.CD-17-0284

Dochez, V.; Caillon, H.; Vaucel, E.; Dimet, J.;Winer, N.; Ducarme, G. Biomarkers and algorithms for diagnosis of ovarian cancer: CA125, HE4, RMI and ROMA, a review. J. Ovarian Res. 2019, 12, 1–9. https://doi.org/10.1186/s13048-019-0503-7

Peng, Y.; Li, J.; Zhu, L. Cancer and non-coding RNAs. Nutritional Epigenomics 2019, 119–132. doi: 10.1016/C2018-0-01621-7

Sanz-Rubio, D.; Martin-Burriel, I.; Gil, A.; Cubero, P.; Forner, M.; Khalyfa, A.; Marin, J.M. Stability of Circulating Exosomal miRNAs in Healthy Subjects. Sci. Rep. 2018, 8, 1–10.

https://doi.org/10.1038/s41598-018-28748-5

Zou, Y.; Zhao, X.; Li, Y.; Duan, S. miR-552: An important post-transcriptional regulator that affects human cancer. J. Cancer 2020, 11, 6226–6233. https://doi.org/10.7150/jca.46613

Zhou, Y.; Zheng, X.; Xu, B.; Hu, W.; Huang, T.; Jiang, J. The Identification and Analysis of mRNA–lncRNA–miRNA Cliques From the Integrative Network of Ovarian Cancer. Front. Genet. 2019, 10, 751. https://doi.org/10.3389/fgene.2019.00751

Li, X.; Yu, S.; Yang, R.; Wang, Q.; Liu, X.; Ma, M.; Li, Y.; Wu, S. Identification of lncRNA-associated ceRNA network in high-grade serous ovarian cancer metastasis. Epigenomics 2020, 12, 1175–1191. https://doi.org/10.2217/epi-2020-0097

Li, Y.; Ge, Y.-Z.; Xu, L.; Jia, R. Circular RNA ITCH: A novel tumor suppressor in multiple cancers. Life Sci. 2020, 254, 117176.

https://doi.org/10.1016/j.lfs.2019.117176

Zhang, M.; Li, F.;Wang, J.; He,W.; Li, Y.; Li, H.;Wei, Z.; Cao, Y. tRNA-derived fragment tRF-03357 promotes cell proliferation, migration and invasion in high-grade serous ovarian cancer. OncoTargets Ther. 2019, 12, 6371–6383.

https://doi.org/10.2147/OTT.S206861

Zhang, L.; Zhou, Q.; Qiu, Q.; Hou, L.; Wu, M.; Li, J.; Li, X.; Lu, B.; Cheng, X.; Liu, P.; et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol. Cancer 2019, 18, 1–19. https://doi.org/10.1186/s12943-019-1080-5

Jia, Y.; Tan, W.; Zhou, Y. Transfer RNA-derived small RNAs: Potential applications as novel biomarkers for disease diagnosis and prognosis. Ann. Transl. Med. 2020, 8, 1092.

https://doi.org/10.21037/atm-20-2797

Lou,W.; Ding, B.; Zhong, G.; Du, C.; Fan,W.; Fu, P. Dysregulation of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 pathway fuels stage progression of ovarian cancer. Aging 2019, 11, 11416–11439. https://doi.org/10.18632/aging.102538

Prat, J.; D’Angelo, E.; Espinosa, I. Ovarian carcinomas: At least five different diseases with distinct histological features and molecular genetics. Hum. Pathol. 2018, 80, 11–27.

https://doi.org/10.1016/j.humpath.2018.06.018

Wang, T.-H.; Chen, C.-C.; Hsiao, Y.-C.; Lin, Y.-H.; Pi, W.-C.; Huang, P.-R.; Wang, T.-C.V.; Chen, C.-Y. Heterogeneous Nuclear Ribonucleoproteins A1 and A2 Function in Telomerase-Dependent Maintenance of Telomeres. Cancers 2019, 11, 334. https://doi.org/10.3390/cancers11030334

Wong, R.W.-C.; Palicelli, A.; Hoang, L.; Singh, N. Interpretation of p16, p53 and mismatch repair protein immunohistochemistry in gynaecological neoplasia. Diagn. Histopathol. 2020, 26, 257–277. https://doi.org/10.1016/j.mpdhp.2020.03.002

Sutton, M.N.; Lu, Z.; Li, Y.-C.; Zhou, Y.; Huang, T.; Reger, A.S.; Hurwitz, A.M.; Palzkill, T.; Logsdon, C.; Liang, X.; et al. DIRAS3 (ARHI) Blocks RAS/MAPK Signaling by Binding Directly to RAS and Disrupting RAS Clusters. Cell Rep. 2019, 29, 3448–3459.e6. https://doi.org/10.1016/j.celrep.2019.11.045

Murakami, S.; Mochimaru, Y.; Musha, S.; Kojima, R.; Deai, M.; Mogi, C.; Sato, K.; Okajima, F.; Tomura, H. Species-Dependent Enhancement of Ovarian Cancer G Protein-Coupled Receptor 1 Activation by Ogerin. Zool. Sci. 2020, 37, 103–108.

https://doi.org/10.2108/zs190106

Di Sanzo, M.; Quaresima, B.; Biamonte, F.; Palmieri, C.; Faniello, M.C. FTH1 Pseudogenes in Cancer and Cell Metabolism. Cells 2020, 9, 2554. https://doi.org/10.3390/cells9122554

Morikawa A, Hayashi T, Shimizu N, et al. PIK3CA and KRAS mutations in cell free circulating DNA are useful markers for monitoring ovarian clear cell carcinoma. Oncotarget. 2018;9 (20):15266–15274. https://doi.org/10.18632/oncotarget.24555

Testa U, Petrucci E, Pasquini L, Castelli G, Pelosi E. Ovarian cancers: genetic abnormalities, tumor heterogeneity and progression, clonal evolution and cancer stem cells. Medicines. 2018;5:1. https://doi.org/10.3390/medicines5010016

Gadducci A, Guarneri V, Peccatori FA, et al. Current strategies for the targeted treatment of high-grade serous epithelial ovarian cancer and relevance of BRCA mutational status. J Ovarian Res. 2019;12(1):9. https://doi.org/10.1186/s13048-019-0484-6

Tsibulak I, Wieser V, Degasper C, et al. BRCA1 and BRCA2 mRNA-expression prove to be of clinical impact in ovarian cancer. Br J Cancer. 2018;119(6):683–692. https://doi.org/10.1038/s41416- 018-0217-4

Lin KK, Harrell MI, Oza AM, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019; 9(2):210–219.

https://doi.org/10.1158/2159-8290.CD-18-0715

Padmanabhan A, Candelaria N, Wong KK, et al. USP15- dependent lysosomal pathway controls p53-R175H turnover in ovarian cancer cells. Nat Commun. 2018;9(1):1270.

https://doi.org/10.1038/s41467-018-03599-w

Duffy MJ, Synnott NC, Crown J. Mutant p53 as a target for cancer treatment. Eur J Cancer. 2017; 83:258–265. https://doi.org/10.1016/j.ejca.2017.06.023

Kim SI, Lee JW, Lee M, et al. Genomic landscape of ovarian clear cell carcinoma via whole exome sequencing. Gynecol Oncol. 2018;148(2):375–382. https://doi.org/10.1016/j.ygyno.2017.12.005

Spreafico A, Oza AM, Clarke BA, et al. Genotype-matched treatment for patients with advanced type I epithelial ovarian cancer (EOC). Gynecol Oncol. 2017; 144(2):250–255. https://doi.org/10.1016/j.ygyno.2016.12.002

Schettini, F.; De Santo, I.; Rea, C.G.; De Placido, P.; Formisano, L.; Giuliano, M.; Arpino, G.; De Laurentiis, M.; Puglisi, F.; De Placido, S.; et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front. Oncol. 2018, 8, 608. https://doi.org/10.3389/fonc.2018.00608

Schettini, F.; Giudici, F.; Giuliano, M.; Cristofanilli, M.; Arpino, G.; Del Mastro, L.; Puglisi, F.; De Placido, S.; Paris, I.; De Placido, P.; et al. Overall Survival of CDK4/6-Inhibitor-Based Treatments in Clinically Relevant Subgroups of Metastatic Breast Cancer: Systematic Review and Meta-Analysis. J. Natl. Cancer Inst. 2020, 112, 1089–1097. https://doi.org/10.1093/jnci/djaa071

Dai, M.; Boudreault, J.; Wang, N.; Poulet, S.; Daliah, G.; Yan, G.; Moamer, A.; Burgos, S.A.; Sabri, S.; Ali, S.; et al. Differential Regulation of Cancer Progression by CDK4/6 Plays a Central Role in DNA Replication and Repair Pathways. Cancer Res. 2020. 81:1332-1346. https://doi.org/10.1158/0008-5472.CAN-20-2121

Roskoski, R. Cyclin-Dependent Protein Serine/Threonine Kinase Inhibitors as Anticancer Drugs. Pharmacol. Res. 2019, 139, 471–488. https://doi.org/10.1016/j.phrs.2018.11.035

Álvarez-Fernández, M.; Malumbres, M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020, 37, 514–529.

https://doi.org/10.1016/j.ccell.2020.03.010

Braal, C.L.; Jongbloed, E.M.; Wilting, S.M.; Mathijssen, R.H.J.; Koolen, S.L.W.; Jager, A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs 2021, 81, 317–331.

https://doi.org/10.1007/s40265-020-01461-2

Duan, L.; Yan, Y.; Wang, G.; Xing, Y.L.; Sun, J.; Wang, L.L. MiR-182-5p Functions as a Tumor Suppressor to Sensitize Human Ovarian Cancer Cells to Cisplatin through Direct Targeting the Cyclin Dependent Kinase 6 (CDK6). J. BUON 2020, 25, 2279–2286. PMID: 33277846.

Colon-Otero, G.; Zanfagnin, V.; Hou, X.; Foster, N.R.; Asmus, E.J.;Wahner Hendrickson, A.; Jatoi, A.; Block, M.S.; Langstraat, C.L.; Glaser, G.E.; et al. Phase II Trial of Ribociclib and Letrozole in Patients with Relapsed Oestrogen Receptor-Positive Ovarian or Endometrial Cancers. ESMO Open 2020, 5, e000926. https://doi.org/10.1136/esmoopen-2020-000926

Konstantinopoulos PA, Norquist B, Lacchetti C, Armstrong D, Grisham RN, Goodfellow PJ, et al. Germline and somatic tumor testing in epithelial ovarian cancer: ASCO guideline. J Clin Oncol 2020; 38:1222–45.

https://doi.org/10.1200/JCO.19.02960

Kurian AW, Ward KC, Howlader N, Deapen D, Hamilton AS, Mariotto A, et al. Genetic testing and results in a populationbased cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol 2019; 37:1305–15.

https://doi.org/10.1200/JCO.18.01854

Griffin NE, Buchanan TR, Smith SH, Leon AA, Meyer MF, Liu J, et al. Low rates of cascade genetic testing among families with hereditary gynecologic cancer: an opportunity to improve cancer prevention. Gynecol Oncol 2019;156:140–6.

https://doi.org/10.1016/j.ygyno.2019.11.005

Reuss A, du Bois A, Harter P, Fotopoulou C, Sehouli J, Aletti G, et al. TRUST: trial of radical upfront surgical therapy in advanced ovarian cancer (ENGOT ov33/AGO-OVAR OP7). Int J Gynecol Cancer 2019; 29:1327–31.

https://doi.org/10.1136/ijgc-2019-000682

Onda T, Satoh T, Ogawa G, Saito T, Kasamatsu T, Nakanishi T, et al. Comparison of survival between primary debulking surgery and neoadjuvant chemotherapy for stage III/IV ovarian, tubal and peritoneal cancers in phase III randomised trial. Eur J Cancer 2020; 130:114–25.

https://doi.org/10.1016/j.ejca.2020.02.020

Harter P, Sehouli J, Lorusso D, Reuss A, Vergote I, Marth C, et al. A randomized trial of lymphadenectomy in patients with advanced ovarian neoplasms. N Engl J Med 2019; 380:822–32.

https://doi.org/10.1056/NEJMoa1808424

Falandry C, Savoye AM, Stefani L, Tinquaut F, Lorusso D, Herrstedt J, et al. EWOC-1: a randomized trial to evaluate the feasibility of three different first-line chemotherapy regimens for vulnerable elderly women with ovarian cancer (OC): a GCIG-ENGOT-GINECO study. J Clin Oncol 2019;37 (15 suppl):5508. https://doi.org/10.1200/JCO.2019.37.15_suppl.5508

Walker JL, Brady MF, Wenzel L, Fleming GF, Huang HQ, DiSilvestro PA, et al. Randomized trial of intravenous versus intraperitoneal chemotherapy plus bevacizumab in advanced ovarian carcinoma: an NRG oncology/gynecologic oncology group study. J Clin Oncol 2019; 37:1380–90.

https://doi.org/10. 1200/JCO.18.01568

Van Driel WJ, Koole SN, Sikorska K, Schagen van Leeuwen JH, Schreuder HWR, Hermans RHM, et al. Hyperthermic intraperitoneal chemotherapy in ovarian cancer. N Engl J Med 2018; 378:230–40. https://doi.org/10.1056/NEJMoa1708618

Norquist BM, Brady MF, Harrell MI, Walsh T, Lee MK, Gulsuner S, et al. Mutations in homologous recombination genes and outcomes in ovarian carcinoma patients in GOG 218: an NRG oncology/gynecologic oncology group study. Clin Cancer Res 2018; 24:777–83.

https://doi.org/10.1158/1078-0432.CCR-17-1327

Ben-David, U.; Beroukhim, R.; Golub, T.R. Genomic evolution of cancer models: Perils and opportunities. Nat. Rev. Cancer 2019, 19, 97–109. https://doi.org/10.1038/s41568-018-0095-3

Ledermann, J.A.; Pujade-Lauraine, E. Olaparib as maintenance treatment for patients with platinum-sensitive relapsed ovarian cancer. Ther. Adv. Med. Oncol. 2019, 11.

https://doi.org/10.1177/1758835919849753

Tomao, F.; Boccia, S.M.; Sassu, C.M.; Chirra, M.; Palaia, I.; Petrella, M.C.; Di Donato, V.; Colombo, N.; Panici, P.B. First-Line Treatment with Olaparib for Early Stage BRCA-Positive Ovarian Cancer: May It Be Possible? Hypothesis Potentially Generating a Line of Research. Cancer Manage. Res. 2020, 12, 5479–5489. https://doi.org/10.2147/CMAR.S194874

Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, et al. Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 2018; 379:2495–505.

https://doi.org/10.1056/NEJMoa1810858

Wang, Q.; Peng, H.; Qi, X.; Wu, M.; Zhao, X. Targeted therapies in gynecological cancers: A comprehensive review of clinical evidence. Signal Transduct. Target. Ther. 2020, 5, 1–34.

https://doi.org/10.1038/s41392-020-0199-6

Vergote I, du Bois A, Floquet A, Rau J, Kim JW, Del Campo JM, et al. Overall survival results of AGO-OVAR16: a phase 3 study of maintenance pazopanib versus placebo in women who have not progressed after first-line chemotherapy for advanced ovarian cancer. Gynecol Oncol 2019; 155:186–91. https://doi.org/10. 1016/j.ygyno.2019.08.024

Ray-Coquard I, Cibula D, Mirza MR, Reuss A, Ricci C, Colombo N, et al. Final results from GCIG/ENGOT/AGOOVAR 12, a randomised placebo-controlled phase III trial of nintedanib combined with chemotherapy for newly diagnosed advanced ovarian cancer. Int J Cancer 2020; 146:439–48. https://doi.org/10.1002/ijc.32606

Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. https://doi.org/10.1038/s41571-018-0113-0

Keenan, T.E.; Burke, K.P.; Van Allen, E.M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 2019, 25, 389–402. https://doi.org/10.1038/s41591-019-0382-x

Conway, J.; Kofman, E.; Mo, S.S.; Elmarakeby, H.; Van Allen, E. Genomics of response to immune checkpoint therapies for cancer: Implications for precision medicine. Genome Med. 2018, 10, 1–18. https://doi.org/10.1186/s13073-018-0605-7

Pellegrino, B.; Musolino, A.; Llop-Guevara, A.; Serra, V.; De Silva, P.; Hlavata, Z.; Sangiolo, D.; Willard-Gallo, K.; Solinas, C. Homologous Recombination Repair Deficiency and the Immune Response in Breast Cancer: A Literature Review. Transl. Oncol. 2020, 13, 410–422.

https://doi.org/10.1016/j.tranon.2019.10.010

Paijens, S.T.; Vledder, A.; De Bruyn, M.; Nijman, H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell. Mol. Immunol. 2020, 18, 842–859. https://doi.org/10.1038/s41423-020-00565-9

Plesca, I.; Tunger, A.; Müller, L.; Wehner, R.; Lai, X.; Grimm, M.-O.; Rutella, S.; Bachmann, M.; Schmitz, M. Characteristics of Tumor-Infiltrating Lymphocytes Prior to and during Immune Checkpoint Inhibitor Therapy. Front. Immunol. 2020, 11, 364.

https://doi.org/10.3389/fimmu.2020.00364

Rohaan MW, Wilgenhof S and Haanen J. Adoptive cellular therapies: the current landscape. Virchows Arch 2019; 474: 449–461.

https://doi.org/10.1007/s00428-018-2484-0

Met O, Jensen KM, Chamberlain CA, et al. Principles of adoptive T cell therapy in cancer. Semin Immunopathol 2019; 41: 49–58.

https://doi.org/10.1007/s00281-018-0703-z

Chandran SS and Klebanoff CA. T cell receptor based cancer immunotherapy: emerging efficacy and pathways of resistance. Immunol Rev 2019; 290: 127–147.

https://doi.org/10.1111/imr.12772

June CH, O’Connor RS, Kawalekar OU, et al. CAR T cell immunotherapy for human cancer. Science 2018; 359: 1361–1365.

https://doi.org/10.1126/science.aar6711

Tanyi JL, Bobisse S, Ophir E, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med 2018; 10: eaao5931. https://doi.org/10.1126/scitranslmed.aao5931

Dafni U, Michielin O, Lluesma SM, et al. Efficacy of adoptive therapy with tumorinfiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 2019; 30: 1902–1913.

https://doi.org/10.1093/annonc/mdz398

Pedersen M, Westergaard MCW, Milne K, et al. Adoptive cell therapy with tumor-infiltrating lymphocytes in patients with metastatic ovarian cancer: a pilot study. Oncoimmunology 2018; 7: e1502905.

https://doi.org/10.1080/2162402X.2018.1502905

Kverneland, A.H.; Pedersen, M.;Westergaard, M.; Nielsen, M.; Borch, T.H.; Olsen, L.R.; Aasbjerg, G.; Santegoets, S.J.; Van Der Burg, S.H.; Milne, K.; et al. Adoptive cell therapy in combination with checkpoint inhibitors in ovarian cancer. Oncotarget 2020, 11, 2092–2105.

https://doi.org/10.18632/oncotarget.27604

Yan W, Hu H and Tang B. Advances of chimeric antigen receptor T cell therapy in ovarian cancer. Onco Targets Ther 2019; 12: 8015–8022.

https://doi.org/10.2147/OTT.S203550

Xie G, Dong H, Liang Y, et al. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine 2020; 59: 102975. https://doi.org/10.1016/j.ebiom.2020.102975

Chou CK and Turtle CJ. Insight into mechanisms associated with cytokine release syndrome and neurotoxicity after CD19 CAR-T cell immunotherapy. Bone Marrow Transplant 2019; 54: 780–784. https://doi.org/10.1038/s41409-019-0602-5

Nersesian S, Glazebrook H, Toulany J, et al. Naturally killing the silent killer: NK cellbased immunotherapy for ovarian cancer. Front Immunol 2019; 10: 1782. https://doi.org/10.3389/fimmu.2019.01782

Osipov A, Murphy A and Zheng L. From immune checkpoints to vaccines: the past, present and future of cancer immunotherapy. Adv Cancer Res 2019; 143: 63–144.

https://doi.org/10.1016/bs.acr.2019.03.002

Chow S, Berek JS and Dorigo O. Development of therapeutic vaccines for ovarian cancer. Vaccines (Basel) 2020; 8: 657.

https://doi.org/10.3390/vaccines8040657

Dafni U, Martin-Lluesma S, Balint K, et al. Efficacy of cancer vaccines in selected gynaecological breast and ovarian cancers: a 20-year systematic review and meta-analysis. Eur J Cancer 2021; 142: 63–82. https://doi.org/10.1016/j.ejca.2020.10.014

Zhang,W.; Lu, X.; Cui, P.; Piao, C.; Xiao, M.; Liu, X.;Wang, Y.;Wu, X.; Liu, J.; Yang, L. Phase I/II clinical trial of a Wilms’ tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunol. Immunother. 2019, 68, 121–130.

https://doi.org/10.1007/s00262-018-2257-2

Sarivalasis, A.; Boudousquié, C.; Balint, K.; Stevenson, B.J.; Gannon, P.O.; Iancu, E.M.; Rossier, L.; Lluesma, S.M.; Mathevet, P.; Sempoux, C.; et al. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J. Transl. Med. 2019, 17, 1–10.

https://doi.org/10.1186/s12967-019-02133-w

Coleman RL, Spirtos NM, Enserro D, Herzog TJ, Sabbatini P, Armstrong DK, et al. Secondary surgical cytoreduction for recurrent ovarian cancer. N Engl J Med 2019; 381:1929–39.

https://doi.org/10.1056/NEJMoa1902626

Penson RT, Valencia RV, Cibula D, Colombo N, Leath CA III, BidzinskiM, et al. Olaparib versus nonplatinum chemotherapy in patients with platinum-sensitive relapsed ovarian cancer and a germline BRCA1/2 mutation (SOLO3): a randomized phase III trial. J Clin Oncol 2020; 38:1164–74.

https://doi.org/10.1200/JCO.19.02745

Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N. Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep 2020; 10:2757.

https://doi.org/10.1038/s41598-020-59671-3

Downloads

Published

2021-12-27