NEW PHARMACEUTICAL DOSAGE FORMS USED IN THE TREATMENT OF BREAST CANCER. LIPOSOMES

Authors

  • Ani-Simona Sevastre University of Medicine and Pharmacy Craiova
  • Stefania Carina Baloi
  • Catalina Elena Cioc
  • Alexandu Oprita

DOI:

https://doi.org/10.52701/monc.2021.v2i1.17

Keywords:

breast cancer, nanomaterials, liposomes

Abstract

In order to obtain antineoplastic compounds and innovative formulations, new technologies and testing methods are continuously being developed. Unfortunately, besides cancer cells, chemotherapy also affects normal cells. An option to avoid toxicity is represented by the targeted cancer treatment using novel pharmaceutical dosage forms.

Liposomes represent a relatively new pharmaceutical dosage form, used for their many advantages. In this article, the methods of liposomal preparation are mentioned, along with the classification and the latest improvements involving this pharmaceutical form. The bioavailability of conventional liposomes is currently improved by developing photodynamic liposomes, pH or temperature sensitive liposomes and targeted liposomes.

References

Greenwell M, Rahman PK, Medicinal Plants: Their Use in Anticancer Treatment, Int J Pharm Sci Res., 2015;6(10):4103-4112.

Paola Sanchez-Moreno, Juan Luis Ortega-Vinuesa, Jose Manuel Peula-Garcia, Juan Antonio Marchal, Houria Boulaiz, Smart Drug-Delivery Systems for Cancer Nanotherapy, Current Drug Targets, 2018;19:339.https://doi.org/10.2174/1389450117666160527142544

Sevastre A. S., Popescu F., Berbecaru A., Croitoru O., Baniceru M., Pharmacokinetic evaluation after percutaneous administration of some non steroidal antiinflamatory drug preparations using animal experiments, 2009, www.terapeutica.ro, Retrieved january 2021.

Katsube N, Iwashita K, Tsushida T, Yamaki K, Kobori M, Induction of apoptosis in cancer cells by Bilberry (Vaccinium myrtillus) and the anthocyanins, J Agric Food Chem., 2003;51(1):68-75.https://doi.org/10.1021/jf025781x

Oprita, A.; Sevastre, A.S. New pharmaceutical dosage forms used in the treatment of breast cancer. Polymeric micelles. Medico Oncology 2020;1(1):38-52.https://doi.org/10.52701/monc.2020.v1i1.9

Syed A.A.Rizvia, Ayman M.Saleh, Applications of nanoparticle systems in drug delivery technology, Saudi Pharmaceutical Journal, 2018;26(1):64-70.https://doi.org/10.1016/j.jsps.2017.10.012

Hossen S, Hossain MK, Basher MK, Mia MNH, Rahman MT, Uddin MJ, Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review, J Adv Res., 2018;15:1-18.https://doi.org/10.1016/j.jare.2018.06.005

Liu Y, Li J, Shao K, Huang R, Ye L, Lou J, et al. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery, Biomaterials, 2010;31(19):5246-57.https://doi.org/10.1016/j.biomaterials.2010.03.011

Singh R, Lillard JW., Nanoparticle-based targeted drug delivery, Exp Mol Pathol, 2009;86(3):215-23.https://doi.org/10.1016/j.yexmp.2008.12.004

Kreuter J., Nanoparticulate systems in drug delivery and targeting, J Drug Target., 1995;3(3):171-3.https://doi.org/10.3109/10611869509015940

Available from:http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm].

Jin S, Li S, Wang C, Biosafe nanoscale pharmaceutical adjuvant materials. J Biomed Nanotechnol. 2014;10(9):2393-419.https://doi.org/10.1166/jbn.2014.1898

Srinivasan M, Rajabi M, Mousa SA, Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy, Nanomaterials (Basel), 2015;5(4):1690-1703.https://doi.org/10.3390/nano5041690

David J. Mc Carthy, Meenakshi Malhotra, Aoife M. O'Mahony, John F. Cryan, Caitriona M. O'Driscoll, Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance, Pharm Res. 2015; 32(4):1161-1185.https://doi.org/10.1007/s11095-014-1545-6

Bhatia S., Chapter: Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications, Natural polymer drug delivery systems: Nanoparticles, plants, and algae, 2016;33-93.

https://doi.org/10.1007/978-3-319-41129-3_2

Available from: https://www.wipo.int/edocs/plrdocs/en/lexinnovananoparticles_smart_delivery_system_for_tumors.pdf.

Din FU, Aman W, Ullah I, Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors, Int J Nanomedicine, 2017;12:7291-7309.https://doi.org/10.2147/IJN.S146315

Prados J., Melguizo C, Ortiz R, Vélez C, Alvarez PJ, Arias JL, Ruíz MA, Gallardo V, Aranega A., Doxorubicin-loaded nanoparticles: new advances in breast cancer therapy, Anticancer Agents Med Chem., 2012;12(9):1058-70.

https://doi.org/10.2174/187152012803529646

Zong Y., Wu J., Shen K., Nanoparticle albumin-bound paclitaxel as neoadjuvant chemotherapy of breast cancer: a systematic review and meta-analysis, Oncotarget., 2017;8(10):17360-17372.

https://doi.org/10.18632/oncotarget.14477

Bowerman CJ, Byrne JD, Docetaxel-Loaded PLGA Nanoparticles Improve Efficacy in Taxane-Resistant Triple-Negative Breast Cancer, Nano Lett., 2017;17(1):242-248.

https://doi.org/10.1021/acs.nanolett.6b03971

Thapa RK, Choi JY, Liquid crystalline nanoparticles encapsulating cisplatin and docetaxel combination for targeted therapy of breast cancer, Biomater Sci., 2016;4(9):1340-50.

https://doi.org/10.1039/C6BM00376A

Deepa G, Sivakumar KC, Sajeevan TP, Molecular simulation and in vitro evaluation of chitosan nanoparticles as drug delivery systems for the controlled release of anticancer drug cytarabine against solid tumours, Biotech., 2018;8(12):493.

https://doi.org/10.1007/s13205-018-1510-x

Wang Y, Dou L, He H, Zhang Y, Shen Q, Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance., Mol Pharm., 2014;11(3):885-94.

https://doi.org/10.1021/mp400547u

Maurya L, Singh S, Rajamanickam VM, Narayan G, Vitamin E TPGS Emulsified Vinorelbine Bitartrate Loaded Solid Lipid Nanoparticles (SLN): Formulation Development, Optimization and In vitro Characterization. Curr Drug Deliv., 2018;15(8):1135-1145.

https://doi.org/10.2174/1567201815666180409105410

Sugumaran A, Ponnusamy C, Kandasamy P, Development and evaluation of camptothecin loaded polymer stabilized nanoemulsion: Targeting potential in 4T1-breast tumour xenograft model. Eur J Pharm Sci., 2018;116:15-25.

https://doi.org/10.1016/j.ejps.2017.10.005

Emerson DL, Bendele R, Brown E, Antitumor efficacy, pharmacokinetics, and biodistribution of NX 211: a low-clearance liposomal formulation of lurtotecan, Clin Cancer Res., 2000;6(7):2903-12.

Ahmad N, Alam MA, Ahmad R, Umar S, Jalees Ahmad F, Improvement of oral efficacy of Irinotecan through biodegradable polymeric nanoparticles through in vitro and in vivo investigations, J Microencapsul., 2018;35(4):327-343.

https://doi.org/10.1080/02652048.2018.1485755

Available from: https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm279174.htm.

Vieira Débora Braga, Gamarra Lionel Fernel, Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (São Paulo), 2016; 14(1):99-103. https://doi.org/10.1590/S1679-45082016RB3475

Available from: https://clinicaltrials.gov/ct2/results?cond=&term=doxil&cntry=&state=&city=&dist=

Harbeck N, Saupe S, Jäger E, A randomized phase III study evaluating pegylated liposomal doxorubicin versus capecitabine as first-line therapy for metastatic breast cancer: results of the PELICAN study, Breast Cancer Res Treat., 2016;161(1):63-72.

https://doi.org/10.1007/s10549-016-4033-3

Brufsky A., nab-Paclitaxel for the treatment of breast cancer: an update across treatment settings. Experimental hematology & oncology, 2017;6:7.

https://doi.org/10.1186/s40164-017-0066-5

Gradishar WJ., Albumin-bound paclitaxel: a next-generation taxane, Expert Opin Pharmacother. 2006;7(8):1041-53.

https://doi.org/10.1517/14656566.7.8.1041

Gandhi NS, Tekade RK, Chougule MB. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances, J Control Release, 2014;194:238-56.

https://doi.org/10.1016/j.jconrel.2014.09.001

Sun T.M., Du J.Z., Yao Y.D., Mao C.Q., Dou S., Huang S.Y., Zhang P.Z., Leong K.W., Song E.W., Wang J. Simultaneous delivery of siRNA and paclitaxel via a "two-in-one" micelleplex promotes synergistic tumor suppression, ACS Nano, 2011;5:1483-1494.

https://doi.org/10.1021/nn103349h

Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options, Drug Deliv Transl Res., 2018;8(5):1483-1507. https://doi.org/10.1007/s13346-018-0551-3

Zhang B., Jia F., Fleming M.Q., Mallapragada S.K. Injectable self-assembled block copolymers for sustained gene and drug co-delivery: An in vitro study, Int. J. Pharm., 2012;427:88-96.https://doi.org/10.1016/j.ijpharm.2011.10.018

Masserini M. Nanoparticles for brain drug delivery, ISRN Biochem., 2013;2013:18. https://doi.org/10.1155/2013/238428

Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett., 2013;8(1):102. https://doi.org/10.1186/1556-276X-8-102

Sarah Brown, David R. Khan, The Treatment of Breast Cancer Using Liposome Technology, Journal of Drug Delivery, 2012;2012, Article ID 212965.

https://doi.org/10.1155/2012/212965

Pawar HR, Bhosale SS, Derle ND: Use of Liposomes in Cancer Therapy: A Review, Int J Pharm Sci Res. 2012;3(10):3585-3590.

Villalva, Denise, Development of new liposome based sensors Thesis, 2015, 10.13140/RG.2.2.26454.55366

Available from: https://www.creative-biostructure.com/liposomes-technology-608.htm

Riaz, M., Zhang, X., Lin, C., Wong, K., Chen, X., Zhang, Get al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review, International journal of molecular sciences, 2018;19(1):195.

https://doi.org/10.3390/ijms19010195

Yogita P. Patil, Sameer Jadhav, Novel methods for liposome preparation, Chemistry and Physics of Lipids, 2014;177:8-18, ISSN 0009-3084.

https://doi.org/10.1016/j.chemphyslip.2013.10.011

Riaz M., Liposome preparation method, Pak J Pharm Sci., 1996;9(1):65-77.

Himanshu A, Sitasharan P, Singhai AK, Liposomes as drug carriers, IJPLS 2011; 2(7):945-951.

Wang, T., Deng, Y., Geng, Y., Gao, Z., Zou, J., Wang, Z., Preparation of submicron unilamellar liposomes by freeze-drying double emulsions, Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006;1758:222-231.

https://doi.org/10.1016/j.bbamem.2006.01.023

Jaafar-Maalej C., Charcosset C., Fessi H., A new method for liposome preparation using a membrane contactor, Journal of Liposome Research, 2011;21:213-220.

https://doi.org/10.3109/08982104.2010.517537

Yu D.G., Branford-White C., Williams G.R., Bligh S.W.A., White K., Zhu L.M., Chatterton N.P., Self-assembled liposomes from amphiphilic electrospun nanofibers, Soft Matter, 2011;7: 8239-8247.

https://doi.org/10.1039/c1sm05961k

Mouritsen O.G., Lipids, curvature, and nano-medicine, European Journal of Lipid Science and Technology, 2011;113:1174-1187.

https://doi.org/10.1002/ejlt.201100050

Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and Challenges of Liposome Assisted Drug Delivery, Front Pharmacol, 2015;6:286.

https://doi.org/10.3389/fphar.2015.00286

Devi Violina, Bhupen Kalita, Liposomes and current developments in anti-cancer drug delivery: An overview, The Pharma Innovation Journal, 2018;7(6):431-436.

Simões Sérgio, Filipe Ana, Faneca Henrique, Mano Miguel, Penacho Nuno, Duzgunes Nejat, Pedroso de Lima Maria, Cationic liposomes for gene delivery, Expert opinion on drug delivery, 2005;2;237-54.

https://doi.org/10.1517/17425247.2.2.237

Beh Cyrus, Seow Wei, Wang Yong, Zhang Ying, Ong Zhan Yuin, Ee Pui-Lai, Yang Yi-Yan, Efficient Delivery of Bcl2-Targeted siRNA Using Cationic Polymer Nanoparticles: Downregulating mRNA Expression Level and Sensitizing Cancer Cells to Anticancer Drug. Biomacromolecules, 2009;10:41-48. https://doi.org/10.1021/bm801109g

Bingqi Zhang, Feng Jia, Michael Q. Fleming, Surya K. Mallapragada,Injectable self-assembled block copolymers for sustained gene and drug co-delivery: An in vitro study, International Journal of Pharmaceutics, 2012;427(1):88-96. https://doi.org/10.1016/j.ijpharm.2011.10.018

Koning Gerben, Li Li, Ten Hagen Timo, Thermosensitive liposomes for the delivery of cancer therapeutics. Therapeutic delivery, 2010;1:707-11. https://doi.org/10.4155/tde.10.65

Kneidl B, Peller M, Winter G, Lindner LH, Hossann M. Thermosensitive liposomal drug delivery systems: state of the art review, Int J Nanomedicine, 2014;9:4387-98.

https://doi.org/10.2147/IJN.S49297

Available from: https://www.clinicaltrialsregister.eu/ctr-search/ trial/2014-003137-25/ES.

Available from: http://celsion.com/thermodox/.

Lu Tao, Lokerse Wouter, L.B. Seynhaeve Ann, Koning Gerben,Ten Hagen Timo, Formulation and optimization of idarubicin thermosensitive liposomes provides ultrafast triggered release at mild hyperthermia and improves tumor response. Journal of controlled release : official journal of the Controlled Release Society., 2015, 220. https://doi.org/10.1016/j.jconrel.2015.10.056

Tagami Tatsuaki, J Ernsting Mark, Li Shyh-Dar, Optimization of a novel and improved thermosensitive liposome formulated with DPPC and a Brij surfactant using a robust in vitro system. Journal of controlled release : official journal of the Controlled Release Society, 2011; 154:290-7. https://doi.org/10.1016/j.jconrel.2011.05.020

Noble Gavin, Stefanick Jared, D Ashley Jonathan, Kiziltepe Tanyel, Bilgicer Basar, Ligand-targeted liposome design: Challenges and fundamental considerations, Trends in biotechnology, 2013; 32.

https://doi.org/10.1016/j.tibtech.2013.09.007

J. Gao, W. Zhong, J. He, Tumor-targeted PE38KDEL delivery via PEGylated anti-HER2 immunoliposomes, International Journal of Pharmaceutics, 2009;374(1-2):145-152.

https://doi.org/10.1016/j.ijpharm.2009.03.018

Pirollo K. F., Chang E. H., Targeted delivery of small interfering RNA: approaching effective cancer therapies, Cancer Research, 2008;68(5):1247-1250.

https://doi.org/10.1158/0008-5472.CAN-07-5810

Reddy B. S., Banerjee R., 17?-estradiol-associated stealthliposomal delivery of anticancer gene to breast cancer cells, Angewandte Chemie-International Edition, 2005;44(41):6723-6727. https://doi.org/10.1002/anie.200501793

Paliwal S. R., Paliwal R., Mishra N., Mehta A., Vyas S. P., A novel cancer targeting approach based on estrone anchored stealth liposome for site-specific breast cancer therapy, Current Cancer Drug Targets, 2010;10(3):343- 353. https://doi.org/10.2174/156800910791190210

Vodovozova E. L., Moiseeva E. V., Grechko G. K.,Antitumour activity of cytotoxic liposomes equipped with selectin ligand SiaLe(X), in a mouse mammary adenocarcinoma model, European Journal of Cancer, 2000;36(7):942-949.

https://doi.org/10.1016/S0959-8049(00)00029-0

Chiang YT, Lyu SY, Wen YH, Lo CL, Preparation and Characterization of Electrostatically Crosslinked Polymer?Liposomes in Anticancer Therapy, Int J Mol Sci, 2018;19(6):1615. https://doi.org/10.3390/ijms19061615

Wu P.-T., Lin C.-L., Lin C.-W., Chang N.-C., Tsai W.-B., Yu J, Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells, Nanomaterials, 2019, 9, 14.

https://doi.org/10.3390/nano9010014

Downloads

Published

2021-05-25